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Non-linear modal analysis approach based on invariant manifold method proposed
earlier by Shaw and Pierre (Journal of Sound and <ibration 164, 85}124) is utilized here to
obtain the non-linear normal modes of a clamped}clamped beam for large amplitude
displacements. The results obtained for the fundamental normal mode are compared with
the corresponding reported experimental and theoretical studies. The e!ects of modal
coupling are examined in greater detail. The limitation of the present method for analyzing
non-linear behavior is highlighted.
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1. INTRODUCTION

Clamped}clamped structures at large amplitude displacements are frequently encountered
in many engineering applications. The problem of computing the normal modes of such
a non-linear continuous system has received much attention recently. It is interesting to
know the non-linear behavior of thin beams with axial restraint at the ends. The non-linear
normal modes can be used to determine the near-resonance response of beams.

MacDonald [1] found that a uniform beam with hinged ends subjected to a concentrated
force at its mid-point, with arbitrary initial conditions, exhibited a dynamic coupling of its
modes of vibrations. Smith et al. [2] experimentally studied the non-linear behavior of
a clamped}clamped thin aluminum strip under sinusoidal pressure excitation and showed
that the fundamental mode shape was much #atter at mid-span and had high curvature at
the ends at large amplitude vibration. Tseng and Dugundji [3] investigated the non-linear
vibrations of a clamped}clamped beam excited by sinusoidal motion of its supports in
a direction normal to its span, and indicated that, for large amplitude vibration, the general
solution involved the forcing frequency component as well as the superharmonic and
subharmonic components. Busby and Weingarten [4] derived an approximate solution for
the non-linear di!erential equation of clamped}clamped beams, and indicated that the
phenomenon of coupled resonance would occur if the non-linear sti!ness terms were large.
Bennouna and White [5] experimentally and theoretically investigated the fundamental
mode shape of a clamped}clamped beam. They suggested that the amplitude-dependent,
normalized fundamental mode shape had a high relative value near the clamped ends at
large amplitude de#ection and the bending strain would increase due to the changes in
mode shape as well as the axial strain. Qaisi [6, 7] employed a power-series approach for
the analysis of non-linear vibration of beams with restrained end supports and resting on
a non-linear foundation. Ghanbari and Dunne [8] experimentally examined the non-linear
damping model for large amplitude random vibration of a clamped}clamped beam.
0022-460X/02/070339#11 $35.00/0 � 2002 Academic Press
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Modal analysis "rst emerged around 1940, as a reliable analysis tool that provides an
understanding of structural characteristics, operating conditions and performance criteria
that enables designing for optimal behavior or solving structural dynamic problems in
existing designs. In linear systems, one of the most important properties is the superposition
principle. That is, a general motion can be written as a linear combination of the normal
modes. However, it does not hold for a non-linear system, but it is still possible to de"ne
non-linear normal modes. Using a geometric method, a concept of non-linear normal
modes, following that of the linear ones, was "rst introduced by Rosenberg [9]. A basic
property of the linear system as well as the non-linear system is that motion consisting of
a single mode at any instant will consist only of the mode at all times, moreover, all the
co-ordinates cross their equilibrium positions simultaneously and also achieve their
maximum values at the same time. The concept of non-linear normal modes has been
developed by many subsequent e!orts. It has given signi"cant insight into the dynamics of
non-linear systems and has provided a systematic method for modal reduction.
Szemplinska-Stupnicka [10] applied the simple harmonic balance approach to attain the
non-linear modes of a multi-degrees-of-freedom system. In terms of two-dimensional
invariant manifold, Shaw and Pierre [11, 12] proposed a methodology to construct normal
modes for non-linear continuous systems. Based on the method of multiple scales, Nayfeh
and Nayfeh [13] and Nayfeh et al. [14] obtained results in agreement with those from the
invariant manifold method.

In this present work, we construct the non-linear normal modes of clamped}clamped
beams. A combination of invariant manifold method and Galerkin procedure proposed
earlier by Shaw and Pierre [11, 12] has been used. The e!ects of non-linearities can be easily
tracked to di!erent orders of linear modes. The non-linear normal modes are obtained as
a combination of certain linear normal modes. The contributions of di!erent linear modes
are easily detected. The numerical results show good agreement with available experimental
results. Moreover, how far the characteristics of the normal mode corresponding to large
amplitude vibration deviate from those of the linear theory are also of interest to us. The
e!ects of modal coupling are examined. The limitation of the present method in analyzing
non-linear behavior is highlighted.

2. FORMULATION

The problem considered is the free vibration of Euler}Bernoulli clamped}clamped beam
under large amplitude de#ection. Compared to linear beams, the tension induced in axially
constrained beams from stretching must be considered, especially under large de#ection.
The governing non-linear partial di!erential equation [15] is
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into equations (1) and (2) results in the following non-dimensional form:

wK #w��"�w� �
�

�

(w�)�dx (4)

and associated boundary conditions

w"w�"0 at x"0 and 1, (5)

where D is a characteristic transverse displacement (either ¸ or h), �"D�A/2I, the overdot
and prime represent partial derivative with respect to time t and the distance along the
beam x respectively. The equation of motion is of second order in time derivatives and of
arbitrary order in spatial derivatives. We rewrite equation (4) in the form

wK #¸[w (x, t)]#N[w(x, t)]"0, (6)

where ¸ and N are linear and non-linear, self-adjoint spatial operator.
Shaw and Pierre [11, 12] presented a methodology to treat this kind of non-conservative

and/or gyroscopic continuous systems. They used a set of two-dimensional invariant
manifolds in phase space that represent normal mode motions for non-linear system, and
then provided the equations of motion that dictate the dynamics on these manifolds.
The manifold passes through a stable equilibrium point (w, wR ) and is tangential to the
eigenspaces of the associated linearized system at that point. They described the response of
systems by the response of a single point on the structure through the amplitude-dependent
mode shape
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). (7)

The normal mode manifolds are obtained through the asymptotic expansion of w(x, t) and
wR (x, t), which correspond to a non-linear separation of variables. However, the choice of the
reference point x

�
makes the method cumbersome. Boivin et al. [16] modi"ed the approach

by "rst applying the Galerkin procedure, with normal modes as trial functions, to discretize
the systems and obtain a sequence of ordinary di!erential equations. This approach avoids
several complications and is fairly straightforward to implement.

Nayfeh and Nayfeh [13] and Nayfeh et al. [14] applied the method of multiple scales
directly to the governing partial di!erential equation and boundary conditions to obtain an
approximation to the non-linear modes and natural frequencies, w (x, t) is "rst expanded in
a "rst order uniform series of the form
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where ¹
�
"t and �t are fast scale and slow scale at one of the natural frequencies. From an

example of a cantilever beam, they got results which were equivalent to those obtained from
invariant manifold techniques.

Based on the modi"ed Shaw and Pierre's method [16], the computation of solution of the
governing equation (6) and boundary conditions (5) begins by discretizing the continuous
system using series of linear eigenfunctions of the form
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The eigenvalue parameters �
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are the positive roots of frequency equation
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where 
 f, g� denotes the usual inner product de"ned as 
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the Kronecker delta, de"ned by �
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On substituting equation (9) into equation (6) and taking the inner product of the
resulting equation with �

�
(x), equation (6) becomes a set of non-linear ordinary di!erential

equations uncoupled at the linear order and coupled via the non-linear term
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Equation (15) is "rst rewritten in two "rst order forms as
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Then, to construct the two-dimensional manifold that reduces to the kth linear mode as the
non-linearity vanishes, the jth mode is related to the kth mode as follows:
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Because the manifold is tangential to the linear eigenspaces of the kth mode at the
equilibrium point, (Q
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(0, 0))"(0, 0) is the equilibrium con"guration of the system.
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Substituting equations (18)}(21) into equations (17a) and (17b) and equating the coe$cients
of q�

�
, q

�
p�
�
, q�

�
p
�
and p�

�
yield the following four equations to be solved:
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Solving the equations give
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The kth non-linear mode is determined in third order non-linearity by
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The exact mathematical solution can be given in terms of the Jacobean elliptic function
C

�
of the form [17}19]
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where k is the modulus of the elliptic function and � is the circular frequency. The elliptic
functionC
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is periodic with a period of 4K(k), whereK is the complete elliptic integral of the
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Nayfeh [20] applied the method of normal forms to obtain an approximate solution for the
dynamics of the kth non-linear mode of the form
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where a
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are constants depending on the initial conditions. The non-linear natural

frequency of the kth mode is
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Equation (24) represents a form of non-linear separation of variables which recovers the
linear dynamics when non-linearities are neglected and systematically produced the
non-linear corrections to the normal modes. It is a direct consequence of the de"nition of



344 W. C. XIE E¹ A¸.
the non-linear modes, which are tangential to their linear counterpart at the system's
equilibrium.

The amplitude dependence of the non-linear mode shapes and frequencies is clearly
exhibited by equations (24) and (28). Note that whenever q

�
(t
�
)"0, w

�
(x, t

�
)"0 for all x at

that instant of time. When p
�
(t*)"0, q
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�
(x, t

�
) is extreme for all

x. This implies that the beam motion in a given non-linear normal mode is synchronous.
Normal mode shapes are most easily observed at peak displacement, i.e., when p

�
(t)"0.
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�
(x) is de"ned by
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As seen from equation (30), the non-linear normal mode shapes as well as the contributions
from non-resonance modes are amplitude-dependent. It should be noted that the property
of synchronous holds for cubic non-linearity as in this case. For systems with a combination
of quadratic and cubic non-linearity, the response of various points would not necessarily
have zero de#ection at the same time.

3. RESULTS AND DISCUSSION

As shown in equation (15), g
��

are dynamic coe$cients that combine the dynamics of
di!erent modes via the corresponding non-linear item, h

���
are coe$cients that include the

contributions from other modes in cubic order (see equation (30)). It was found that changes
of generalized parameter caused the change in mode shapes at large amplitude de#ection.
Both g

��
and h

���
are proportional to �, which is a material parameter and is related to the

dimension of the beam. It implies that the more slender the beam, the stronger the
non-linearity under large amplitude vibration. The generalized parameters in the linear
normal modes are not applicable to the non-linear normal modes. The non-dimensional
parameters g
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/!�"�
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(x)��
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�
�
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�
)� dxdx and h

���
/� are listed in Tables 1 and 2,

respectively, for the "rst six modes.
Linear normal modes are orthogonal to one another, and it does not hold for non-linear

beams. However, the property of orthogonality still exists between the odd and even order
TABLE 1

Non-dimensional non-linear dynamic coe.cients

!g
��
/!� k"1 2 3 4 5 6

j"1 !151)354 0 962)422 0 2010)5 0
2 0 !2120)6 0 2939)1 0 5700
3 119)714 0 !9782)16 0 6428)3 0
4 0 788)79 0 !29 440 0 8823
5 93)6898 0 2408)32 0 !7e4 0
6 0 699)71 0 4024)94 0 11 521
7 75)1449 0 1704)94 0 7529)9 0
8 0 453)71 0 3935)13 0 12 601
9 46)7487 0 1546)84 0 7516)2 0

10 0 394)77 0 3688)79 0 12 739
11 10 0 1000 0 7000 0
12 0 300 0 3000 0 10 000



TABLE 2

Non-dimensional coe.cients

h
���

/� k"1 2 3 4 5 6

j"1 / 0 !5)2967e!2 0 !1)7639e!2 0
2 0 / 0 !6)3059e!2 0 !2)6048e!2
3 9)3196e!3 5)0893e!2 / 0 !6)6740e!2 0
4 0 * 0 / 0 !5)0855e!2
5 1)0695e!3 0 1)0047e!2 0 / 0
6 0 4)3382e!3 0 1)7117e!2 0 /
7 2)4501e!4 0 6)7683e!3 0 2)1968e!2 0
8 0 9)1343e!4 0 1)2902e!2 0 2)5264e!2
9 5)9034e!5 0 2)0740e!3 0 !2)0515e!1 0

10 0 3)3670e!4 0 3)5367e!3 0 1)0977e!3
11 2)3499e!5 0 6)0305e!4 0 5)1929e!3 0
12 0 1)2676e!4 0 1)3338e!3 0 6)4767e!3

TABLE 3

Numerical and experimental analyses of the fundamental mode shape at D/h"2)1

x =*1 =*2 =*3

0 0 0 0
0)025 0)00846 0)0338 0)018776
0)05 0)03249 0)075 0)067414
0)075 0)07004 0)1339 0)135423
0)1 0)11907 0)2103 0)21478
0)125 0)17757 0)278 0)300358
0)15 0)24352 0)3449 0)389005
0)175 0)31497 0)4141 0)478003
0)2 0)39001 0)4832 0)564069
0)225 0)46677 0)5542 0)643604
0)25 0)54348 0)6252 0)713863
0)275 0)61846 0)6834 0)774036
0)3 0)69011 0)7456 0)825278
0)325 0)75699 0)8 0)86956
0)35 0)81776 0)8453 0)908159
0)375 0)87125 0)8817 0)940865
0)4 0)91645 0)9181 0)966464
0)425 0)95349 0)9563 0)984062
0)45 0)97873 0)97873 0)99419
0)475 0)99466 0)99466 0)998782
0)5 1 1 1
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non-linear normal modes. It can be demonstrated from equation (30) and Tables 1 and 2
that odd order non-linear modes comprise a combination of odd order linear normal
modes, and even order non-linear modes consist of a combination of even order linear
modes. No mode coupling e!ects exist between odd order normal modes and even order
normal modes. This is in agreement with the results obtained by Chakraborty et al. [21].

Bennouna and White [5] examined experimentally the fundamental mode shape of
a slender clamped}clamped beam of dimensions 2�20�610 mm made of aluminum DTD



Figure 1. Comparison of the fundamental mode shape: } }�} }, linear; **, experimental; } } }, invariant
manifold.

TABLE 4

Modal coupling e+ects

x D4 D6 D8 D10 D12 D¸ DM

0)000 0)00000 0)00000 0)00000 0)00000 0)00000 0)00000 0)00000
0)025 0)01547 0)01651 0)01724 0)01743 0)01878 0)00846 0)03380
0)050 0)05796 0)06125 0)06355 0)06404 0)06741 0)03249 0)07500
0)075 0)12160 0)12713 0)13098 0)13155 0)13542 0)07004 0)13390
0)100 0)20067 0)20737 0)21209 0)21236 0)21478 0)11907 0)21030
0)125 0)28971 0)29575 0)30039 0)30006 0)30036 0)17757 0)27800
0)150 0)38366 0)38686 0)39056 0)38958 0)38900 0)24352 0)34490
0)175 0)47802 0)47633 0)47864 0)47723 0)47800 0)31497 0)41410
0)200 0)56899 0)56086 0)56191 0)56047 0)56407 0)39001 0)48320
0)225 0)65349 0)63828 0)63871 0)63762 0)64360 0)46677 0)55420
0)250 0)72932 0)70740 0)70816 0)70757 0)71386 0)54348 0)62520
0)275 0)79508 0)76788 0)76984 0)76963 0)77403 0)61846 0)68340
0)300 0)85018 0)81995 0)82362 0)82344 0)82527 0)69011 0)74560
0)325 0)89473 0)86418 0)86952 0)86900 0)86956 0)75699 0)80000
0)350 0)92942 0)90128 0)90767 0)90663 0)90816 0)81776 0)84530
0)375 0)95536 0)93190 0)93837 0)93691 0)94086 0)87125 0)88170
0)400 0)97391 0)95656 0)96208 0)96053 0)96646 0)91645 0)91810
0)425 0)98467 0)97559 0)97943 0)97818 0)98406 0)95349 0)95630
0)450 0)99437 0)98915 0)99112 0)99041 0)99419 0)97873 0)97873
0)475 0)99865 0)99729 0)99782 0)99762 0)99878 0)99466 0)99466
0)500 1)00000 1)00000 1)00000 1)00000 1)00000 1)00000 1)00000
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S070 at large de#ection. Here, the experimentally investigated fundamental mode shape of
the beam at =

�
/h"2)1 are compared with the analytical results from the invariant

manifold method, where=
�
/h is the maximum amplitude at mid-point/beam thickness. In

Table 3,=*1 is the theoretical normalized fundamental mode shape of the beam (linear),
=*2 is the measured normalized mode shape, and =*3 is the normalized mode shape
calculated from invariant manifold method. The peak amplitude along half of the beam at
intervals of 0)0251 was used for the mode shape estimates, and symmetry is assumed. The
comparison is visualized in Figure 3. Although the numerical values are di!erent, both the
numerical and experimental mode captures the same features of the non-linear mode and
exhibits the same trends. The result suggests that for clamped}clamped beams, the linear
modes are di!erent from the non-linear modes, that is, at large amplitude de#ection. The
in#uence of non-linearities is clearly illustrated in Figure 1. An attempt was made to
increase the accuracy by increasing the number of normal modes involved. However, for the



Figure 2. Convergence of model coupling for the fundamental mode shape:**, experimental; } } }, up to four
terms; **, up to six terms.

Figure 3. Comparison of the "rst normal mode shape as the amplitude increases:**, linear;*�*, >/h"0)5;
}} }, >/h"1)0; * -* -, >/h"1)5; } } }, >/h"2)5; **, >/h"2)7; *�*, >/h"2)9.
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fundamental non-linear mode, the third linear modes have the most signi"cant e!ect on the
fundamental non-linear mode. The higher the modes are, the less the e!ects are. These are
shown in Table 4 and Figure 2, where DN are numerical results from the current method,
N denotes the linear modes used for approximation, and D¸ represents the linear results
and those from the experiment respectively.

The contribution of other modes is to be amplitude dependent, or dependent on the
maximum amplitude. The peak amplitudes have a signi"cant in#uence on the
combinational e!ects of the di!erent normal modes. The in#uence of various linear modes
on the non-linear modes can be visualized easily. The fundamental non-linear normal mode
and the second non-linear mode depicted in Figures 3 and 4 illustrate the amplitude-
dependent shape as the amplitude increases. From Figures 3 and 4, we can see that, as the
amplitude increases, at the mid-span of the beam, both the fundamental and second mode
shapes have higher curvature at points near the two clamped ends. For the "rst mode shape,
it also turns #atter at the mid-span of the beam at large amplitude. The second non-linear
mode shape deviates from the linear mode shape signi"cantly. However, when the
amplitude is small, i.e., less than h, the non-linear mode approaches the linear mode. Thus,
the non-linearity induced by the tension in clamped}clamped beam is negligible at small
amplitude vibration. It is possible to obtain quite accurate results by neglecting the
non-linear coupling terms and considering each mode individually for response prediction.
It was also observed that lower linear modes contribute negative e!ects to higher non-linear
modes, while the contribution from higher linear modes to the lower non-linear modes are



Figure 4. Comparison of the second mode shape as the amplitude increases: **, linear; - - -, non-linear;
>/¸"0)002; * - -*, non-linear, >/¸"0)004; } } }, non-linear, >/¸"0)006; *�*, non-linear, >/h"0)008.

Figure 5. Maximum amplitude de#ection at mid-point of the beam.
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positive. When the normalized beam amplitudes '1)5, at least two modes are considered
needed for accurate response prediction.

As seen in Figure 3, when the amplitude/thickness ratio is 2)7, the fundamental non-linear
mode shape no longer resembles the shape as in those of lower ratios. This is mainly from
the modal coupling e!ects, i.e., the higher linear modes have a stronger e!ect on the
composition of the fundamental non-linear mode shape. The current method is based on the
assumption that the motion of each co-ordinate will reach its maximum, either in positive
or in negative direction, at exactly the same time. This is only true if the eigenvector
elements (mode shapes) are real quantities (positive or negative). However, when the
amplitude/thickness ratio reaches 3)0, equations (24) and (30) give a complex value, and the
non-linear normal modes are not synchronous for a beam of such strong non-linearity.
Therefore, the invariant manifoldmethod is not suitable for clamped}clamped beam of such
a case. Figure 5 gives the restriction for di!erent ratios of length/thickness.

4. CONCLUSION

Normal modes for a clamped}clamped beam at large amplitude displacement have been
examined by using non-linear normal modes and invariant manifold method developed
earlier by several researchers [9, 11}14, 16]. The Galerkin procedure is applied to decouple
the non-linear partial di!erential governing equations. The individual linear normal modes
are shown to have an e!ect on the non-linear modes at large amplitudes. A comparison
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between the measurement and current method exhibits the same trends for the fundamental
mode. The orthogonality between the odd and even order non-linear normal modes is
veri"ed. Higher curvatures with the increase of the amplitudes are found near the clamped
ends. When the amplitude/thickness ratio reaches 3)0 and strong non-linearity emerges, the
current method is not suitable for this system. The non-linear normal modes are useful for
model reduction and in determining the near-resonance response of the clamped}clamped
beams.
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